

Norwegian University of Life Sciences

Funded by the

European Union

HORIZON-MSCA-2021-SE-01-01, project number 101086363

UNPRECEDENTED – Unrevealing the mechanism involved when producing biodiesel form waste oil using a combined experimental and theoretical methodology

Webinar: The 2023 call of MSCA Staff Exchanges

Professor Jorge Mario Marchetti - Physics Institute Faculty of Science and Technology -Norwegian University of Life Science

November 28th 2023

Norwegian University of Life Sciences

Summary:

- 3 international parties
- 4 Year project (January 2023)
- Staff exchange among parties
- Lead by NMBU Norway

Μ

Ν

Norges miljø- og biovitenskapelige

universitet

Participants

Dr. João Gomes

Dr. Jaime Puna

Ph.D. Candidate Sila Ozkan

Norges miljø- og biovitenskapelige universitet

Dr. Jorge Marchetti

Dr. Suvidha Gupta

Ph.D. Candidate Getachew DemiePh.D. Candidate Iver HvidstenMc.S. Sven Andreas Högfeldt

UNIVERSIDAD UNIVERSIDAD DEL SUR

Dr. Alfredo Juan Dr. Graciela Brizuela Dr. Pablo Bechthold Dr. Estela Pronsato Dr. Ruben Ambrusi Dr. Julian Juan Dr. Alejandro Gonzalez Fa

Abstract *

40% reduction on emissions should be achieved by 2030 within EU with the outstanding goal for Europe to become the first climate neutral continent by 2050. These goals need to be reached without jeopardizing economic development and growth, and simultaneously fulfilling the UN goals for sustainability.

One of the main contributors to climate change and global warming is emissions from our vehicles as these mainly use petroleumbased fuels. To address this, new approaches, methodologies, and technologies must be developed.

Biodiesel is one option to substitute diesel; however, its production has been controversial since it requires the use of edible oils and thus creates conflicts with the production of food crops, making it less attractive. Because of this problem, newer technologies are being developed to treat lower quality nonedible oils. However, as yet, these are not economically viable.

To address these problems, UNPRECEDENTED will focus on the use of waste oil. This new raw material has been tested experimentally with promising results. However, how the reaction is taking place and the steps involved is far from being understood. This lack of knowledge has a negative effect when selecting new technologies or testing new feedstocks.

UNPRECEDENTED will use a combine methodology of experimental data and theoretical modelling (DFT based calculations) to study and fully comprehend the biodiesel production reaction. This methodology will permit a full understanding of the reactive steps involved, the reaction pathway that is followed as well as the energies involved in each reactive step. This methodology will assess for the conversion of waste oil in the presence of renewable alcohols to produce biodiesel when using new catalytic materials that are biobased, produce from renewable sources, and enriched with glycerol.

What do we do in UNPRECEDENTED?

Norwegian University of Life Sciences

Work Package no.	1	Start/End month	1/48
Work Package title	Project Management		

			,		
Work Package no.	2	Start/End month	1/24		ISEL
Work Package title	Preparation and characterizat	tion of the new catalysts			INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA
	I			1	

Work Package no.	3	Start/End month	12/36	B Norges milje- og biovitenskapelige
Work Package title	Experimental testing of catal	ysts and reaction optimizati	ion	N universitet

Work Package no.	4	Start/Eend month	12/48	UNIVERSIDAD NACIONAL DEL SUR
Work Package title	Development models based of	on DFT calculations and kir	ietics	

Work Package no.	5	Start/End month	1/48
Work Package title	Education and training		

Work Package no.	6		Start/End month	1/48
Work Package title	Communication	and dissemin	nation of results	

Deliverables In detail

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Contents lists available at ScienceDirect

Journal of Physics and Chemistry of Solids

journal homepage: www.elsevier.com/locate/jpcs

ty Functional Theory (DFT) with Van der Waals ion Package (VASP). Our calculations reveals a of $-1.21 \,\mathrm{eV}$, which is more stable than ethanol to two Ca atoms and the C methyl bonds to a nding show a stabilization of ethyl formate as a the gas phase. A relaxed molecular geometry is s a charge transfer (0.20 e) from the adsorbate charge decrease of 0.16 e. The Ca-O in the

Data management plan									
Dissemination and exploitation									
Conference 1	The adsorption of eth	yl formate on CaO: A DFT study							
Catalysts preparation	P Bechthold ^{a,b,1} J Juan ^{d,b}	^{,1} , A. Juan ^{a,b,*,1} , J.M. Marchetti ^{c,1}							
Transfer of info	^a IFISUR (UNS-CONICET), Av. Alem 1253, (
Paper 1		al del Sur, Av. Alem 1253, (8000) Bahía Blanca, Argentina an University of Life Sciences, Drøbakveien 31, 1432 Ås, Norway							
Progress report M13	^d INFAP (CONICET), Av. Ejército de los Ande								
Mid term meeting									
Training course 1	ARTICLE INFO	ABSTRACT							
Conference 2 & 3	Keywords:	Ethyl formate adsorption on CaO (001) is analyzed using Density F							
Workshop 1	CaO Catalyst	corrections, implemented through the Vienna ab Initio Simulation possible adsorption site at low coverage with adsorption energy of							
Catalysts characterization	Ethyl formate Adsorption	and less stable than formic acid. Both molecular oxygens bond to							
Catalysts activity	DFT	surface oxygen. The analysis of the electronic structure and bondin result of a shift in its states to lower energies, with respect to the							
Catalysts enhacement		obtained after adsorption with no dissociation detected. There is a							
Conference 4		to the surface. At the same time, H–C (formate) experiences a cl surface mostly shows a decrease in bond order after adsorption.							
Paper 2 & 3									
Paper 4									
Sensitivity study									
Training Course 2									
Conference 5									
Conference 6									
Paper 5									
Optimization									
Glycerol enrichment									
Conference 7									
Paper 6									
Training Course 3									
Reaction energies									
Workshop 2									
Conference 8									
Kinetics									
Paper 7									
Project management									
	• • • • • • • • • • • • •								

Months

ELSEVIER

Deliverable

Period 1: 01/01/2023-31/12/2024

											-			-										
Deliverable	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Data management plan																								
Dissemination and exploitation																								
Conference 1																								
Catalysts preparation																								
Transfer of info																								
Paper 1																								
Progress report M13																								
Mid term meeting																								
Training course 1																								
Conference 2 & 3																								
Workshop 1																								
Catalysts characterization																								
Catalysts activity																								
Catalysts enhacement																								
Conference 4																								
Paper 2 & 3																								

TRIPS

UNS to ISEL 4 PM
NMBU to ISEL 2 PM
UNS to NMBU 10 PM
ISEL to NMBU 3 PM

Benefits

- 1) Huge possibility for cooperation and joint research.
- 2) Budget for doing the secondments.
- 3) Opportunity for younger research career development.
- 4) Access to new facilities and new methodologies.
- 5) Involvement in a new research activity.

Challanges

- 1) High cost of living expenses in Norway, short secondments is not recommended.
- 2) Delays in the payment in receiving countries.
- 3) High taxes on transfer of budget and therefore lost of money.
- 4) Saving all traveling, financial information for 5 years after end of project.
- 5) Institutional numbers (PIC)

Thank you very much for your time

