

Raising energy efficiency and cutting greenhouse gas emissions

An analysis of publicly funded petroleum research

Programmes PETROMAKS/DEMO 2000

About the programmes PETROMAKS/DEMO 2000

Large-scale Programme for the Optimal Management of Petroleum Resources (PETROMAKS)

A major part of petroleumrelated research activities at the Research Council of Norway are consolidated under the PETROMAKS programme, which is one of seven programmes under the Research Council's Large-scale Programme initiative.

The PETROMAKS programme encompasses strategic basic research, competence-building, applied research and technology development. The programme promotes knowledge creation, industrial development and international competitiveness to enhance value creation for society based on petroleum resources.

Launched in 2004, the programme will conclude in 2013 after having allocated approximately NOK 2 billion during its programme period.

Programme for demonstration and pilot testing in the petroleum sector (DEMO 2000)

The DEMO 2000 programme provides support to pilot projects in the petroleum industry to demonstrate and qualify cost effective technology for offshore field developments on the Norwegian continental shelf.

The goal is to improve efficiency and reduce environmental impact on new and existing installations and to provide a foundation for new products and jobs.

Launched in 1999, the DEMO 2000 programme allocates approximately NOK 50 million annually.

Contents

Preface	. 3
Raising energy efficiency and cutting greenhouse gas emissions	. 4
Projects opening up new possibilities	. 7
Research on environmentally friendly utilisation	
of petroleum resources	. 8
Research carried out at universities, university colleges	
and independent research institutes	. 8
Research carried out by the industry	. 9
<u> </u>	

Selected projects from the portfolio

Digging like a badger to cut emissions	
--	--

Extending the reach of horizontal drilling	12
Light rope to replace heavy wire	14
Generating electricity under water	16
Faster drilling cuts emissions	18
Rapid robots	20
Separating oil and water on the seabed	22
Smooth pipes improve pressure	24
Projects included in the analysis	25
Projects relating to raising energy efficiency	
– the PETROMAKS programme	25
Projects relating to raising energy efficiency	
– the DEMO 2000 programme	

Badger Explorer ASA has developed a semi-automated, energy efficient drilling robot.

Researchers at SINTEF are making strides in developing a subsea power supply.

FMC Technologies saves energy by relocating the oil/water separation process to the seabed.

Preface

Petroleum activities comprise Norway's largest industry in terms of value creation, government revenue and export value. In 2011 several discoveries of major petroleum deposits in the Barents Sea and the North Sea have underscored the significant resource potential remaining on the Norwegian continental shelf.

Norway still has sufficient petroleum reserves to sustain substantial production and value creation for many years to come. At the same time, the world is facing tremendous challenges in terms of reducing global emissions of greenhouse gases. Norway plays an important role in this context as a stable, environmentally conscious supplier of petroleum with a long history of research and technology development.

The broad-based political agreement on climate policy¹ achieved in the Storting in 2008 states that climate must be a prime focus of publicly funded petroleum research. Each year since 2010 the Ministry of Petroleum and Energy has allocated earmarked funding for climate-related petroleum research over the national budget.

This brochure is based on an analysis study that ascertained that since 2004 the Research Council's PETROMAKS and DEMO 2000 programmes have allocated funding to more than 80 projects carried out by the research community and private industry relating to climate challenges. Once these projects have been concluded, they will have received

¹ Report No. 34 (2006-2007) to the Storting on Norway's climate policy resulted in a broad-based political agreement in 2008.

a total of over half a billion kroner in public funding. There is no doubt that many of the measures recommended by these projects will have positive impacts on the environment. Many of these research findings can contribute to making processes more energy efficient or to directly reducing emissions of greenhouse gases.

The brochure presents a selection of these projects. A complete list of projects under the PETROMAKS and DEMO 2000 programmes which address raising energy efficiency may be found at the end of the brochure.

In the revised OG21 strategy (Oil & Gas in the 21st Century), the strategic body for the petroleum industry identifies higher energy efficiency and cleaner production as the most important strategic objectives for petroleum research in the years ahead. The target must be for Norway to remain the oil and gas province with the highest energy efficiency, lowest emissions to air, and lowest levels of hazardous emissions to sea per produced unit. The strategy recommends strengthening public funding of petroleum-related research and development (R&D) over time, and identifies the development of energy efficient technology to reduce emissions to air and sea as one of four priority technology areas.

In the course of 2013, a new large-scale petroleum research programme will succeed the PETROMAKS programme, continuing to promote activities with a clear focus on technology and knowledge development that will further reduce the petroleum industry's environmental footprint.

I trust you will find this brochure informative.

Siri Helle Friedemann

Director, Department for Petroleum Research Division for Energy, Resources and the Environment

Raising energy efficiency and cutting greenhouse gas emissions

The government white paper on Norwegian climate policy (Report No. 21 to the Storting)² presented in April 2012 states that Norway should have one of the world's most ambitious climate policies, and that this will entail implementing new, more efficient technology. In the global context, Norway is at the forefront of energy efficient oil production.

As Norway's fields mature, increasing amounts of energy will be required to recover oil and gas deposits. The white paper points out that petroleum research can help to reduce greenhouse gas emissions through more energy efficient development and operation of oil and gas installations. Research and technology development can help to cut emissions to air both directly, for example by reducing the tonnage of carbon dioxide (CO_2) produced by emitting sources, and indirectly through more energy efficient production processes.

Energy supply – electrifying the Norwegian continental shelf

Oil and gas installations on the Norwegian continental shelf emit roughly 14 million tonnes of CO₂ equivalents annually. Some 75% of these emissions stem from local electricity production using natural gas turbines for offshore operations. In order to reduce these emissions, the feasibility of electrifying many offshore installations through connections to the mainland is being discussed. The mainland electricity will have to be produced using clean sources of energy

Examples of relevant topics/challenges:

- Raising energy efficiency
 - >> energy supply
 - >> more efficient use of energy
 - >> reducing time required for energy intensive processes
- Reducing greenhouse gas emissions
 - >> reducing flaring
 - >> reducing emissions from power generation

if such a solution is to yield significant environmental benefits.

More efficient use of energy through treatment of produced water and subsea separation

No one will pay for oil with water in it. Water in the oil will also damage refinery equipment, so the water must be separated from the oil before transported to the refinery.

Water, being heavier than oil, sinks due to gravity. Enlarging the size of the water droplets makes them sink faster and separate more easily from the oil. **Coalesence**, the technology for inducing water droplets to join together into larger droplets, yields other benefits as well: there is less need for chemicals to break down the oil/water emulsions and less need to heat the oil/water mixture, which in turn raises the energy efficiency of the process.

² 2011-2012

Performing parts of the oil/water separation process on the seabed helps to make oil production more energy efficient. Reinjecting the produced water back into the oil well frees up room in the pipeline up to the platform, so less energy is spent on pumping water hundreds of metres up to the platform for separation and then down again.

Reducing time required for energy intensive processes

An indirect way to achieve cuts in emissions to air is by making processes more efficient so they can be carried out more quickly; spending less time on the same operation means reduced emissions to air. Cutting the time needed for energy intensive processes may involve, for instance, shortening the time spent perfoming a drilling operation, rigless drilling or using a seabed-placed drilling unit.

Reducing flaring

Flaring is the practice of burning off excess flammable gas and oil from petroleum recovery. This is both a waste of resources and a significant environmental strain in the form of large emissions of CO_2 . Flaring should thus be kept to a minimum. However, flaring does provide a safe way to vent gas and fluid if a fatal error should occur in the production process. Therefore, a small pilot flame is kept burning from the flare stack at production platforms.

A better optimised process of recovering oil and gas will translate into fewer facility malfunctions and will thus reduce flaring by limiting petroleum installation shutdowns.

Reducing emissions from power generation

Power generation using natural gas and diesel fuel is the primary source of CO₂ emissions on the Norwegian continental shelf. Raising energy efficiency and phasing out the turbines used to generate power are key environmentally friendly measures for saving energy and cutting emissions.

He Zhao, a Ph.D. student under the Remote Gas project and now a post-doctoral fellow in the Low Emission LNG project at SINTEF Energy Research, is examining droplet formation in the laboratory. (Photo: SINTEF Energy Research AS)

Projects opening up new possibilities

The Research Council's Department for Petroleum Research has carried out an analysis study to identify petroleum research projects that have the potential to improve energy efficiency and/or reduce emissions to air should the new technology and research findings be implemented.

The study is based on close dialogue with the project managers of more than 80 projects funded under the Research Council's PETROMAKS and DEMO 2000 programmes. The analysis shows there is great potential in many of the projects for raising energy efficiency and cutting emissions to air. This potential can be realised by implementing new technology in several areas.

The findings show that across a variety of project types and scientific disciplines, 81% of the projects have the potential to raise energy efficiency, while 67% have the potential to reduce emissions to air. In addition, nearly half the project managers responded that their projects also have potential for other environmental benefits such as lower emissions to sea and less use of chemicals. This suggests that new technology in general contributes to both raising energy efficiency and cutting greenhouse gas emissions.

Feedback from more than 80 project managers indicates that a large proportion of the projects represent potential to both raise energy efficiency and reduce greenhouse gas emissions. Please note that since most projects offer possibilities for multiple environmental benefits, the number of projects under each topic adds up to more than the total number of responses. The two petroleum-related programmes have allocated NOK 675 million to projects relating to raising energy efficiency in the petroleum sector and/or cutting the industry's emissions to air. Most of the projects fall under the technology areas *subsea processing and transportation* and *cost-effective drilling and intervention*.

At the end of this brochure is a list of the projects under the PETROMAKS and DEMO 2000 programmes whose activities, according to project managers' responses, can contribute directly or indirectly to raising energy efficiency and/or cutting greenhouse gas emissions.

The project managers' own classification of environmental potential	Number	Percentage
Energy efficiency	72	81
Less emission to air	60	67
Electrification	13	15
Other	43	48
Total number of responses	89	

Public funding allocated to petroleum research with potential for raising energy efficiency and/or cutting greenhouse gas emissions

Research on environmentally friendly utilisation of petroleum resources Many of the projects in the petroleum programmes' portfolios aim to develop technologies for raising the energy efficiency of oil and gas production on the Norwegian continental shelf.

>> Implementing bottomingcycle steam turbines on gas turbines on the Norwegian continental shelf would cut 2.65 million tonnes of CO₂ emissions per year – the equivalent of over a million motor vehicles. Implementing new, environmentally friendly technology will boost the efficiency of power production and lower energy consumption, thereby reducing CO₂ emissions.

Raising the energy efficiency of power production is one of the top environmentally friendly priorities for saving energy and cutting emissions. This may be done, for example, by examining how to most efficiently utilise available waste heat at offshore platforms.

Project findings indicate that:

>> Energy savings of up to 35% may be possible by implementing bottomingcycle steam turbines on the platforms' gas turbines. >> Optimising electricity production at existing oil platforms has the potential to cut energy consumption by 15-20%.

Research carried out at universities, university colleges and independent research institutes

Among the projects carried out by research groups, it is particularly those in the area of subsea processing and transportation that have led to the development of technology that can raise energy efficiency and reduce greenhouse gas emissions to air. Although the primary objective of these projects may have been technology development for other specific purposes such as separation technology, they have made important contributions to developing technology with major potential to benefit the environment. The projects receiving funding from the Research Council address a wide array of topics and promote advances in many areas.

Findings from projects in the portfolio include the following:

>> Electrocoalescence studies indicate that raising the efficiency of oil/water separation at an oil production facility can reduce the power requirement for this operation by over 50%.

>> Phasing out fields with topside installations and developing new fields with subsea installations can, in some cases, reduce greenhouse gas emissions by 50%.

>> Using low-friction materials in pipelines can reduce in-line pressure drops and provide more energy efficient transport of multiphase fluids. It can also reduce the number of compressors needed along the pipeline.

>> In the long run, halving emissions from inefficient gas turbines on the Norwegian continental shelf would reduce greenhouse gas emissions equal to the annual emissions from 2.5 million petrol-powered vehicles in Norway. >> Electrification of the Norwegian continental shelf could substantially cut local emissions from platforms and floating production units, particularly emissions from inefficient gas turbines.

Research carried out by the industry

Research carried out by the petroleum industry itself indicates that advances in drilling and well technology hold the greatest potential for benefitting the environment. Raising energy efficiency is not the primary objective of these projects, but rather the result of development and innovations targeting other ends.

The analysis shows that although the contributions of each individual project may be modest, collectively and together with other innovations they have major potential for bringing about real change in the petroleum industry. The potential for raising energy efficiency and cutting greenhouse gas emissions can primarily be realised by implementing technology in a number of technology areas such as robotisation, automation and faster drilling.

Feedback from the project managers indicates that good progress is being made on developing new and improved methods for drilling greater distances and more efficiently than is possible with conventional methods. Other findings include:

>> New oval-hole drilling technology can reduce friction by 10% compared to conventional round well paths. >> Loading oil from a floating platform directly to tankers could reduce emissions of volatile organic compounds (VOC) by more than 50%. This would spare the environment 750 000 tonnes of CO₂ equivalents annually – as much as the emissions from 400 000 motor vehicles in Norway.

>> New technology for drilling from floating rigs can reduce fuel consumption by 30%.

>> More knowledge about drilling and well models in the planning and operational phases could improve well construction and cut CO, emissions by 10%.

>> A newly designed pump for produced water should raise efficiency by at least 10% compared to conventional pumps, due to better separation and hence less droplet breakup.

Digging like a badger to cut emissions

The Badger Explorer is a semi-automated drilling robot with a standard drill bit on the front end, rotated by an electric motor. Cuttings are transported to the tail end of the device and compacted against the walls of the borehole so that the robot digs through the formation like a badger.

The Badger Explorer collects formation data during the drilling operation. The data collected is transmitted via the power cable to a communications device and relayed to the operations centre on shore. Operating the drill requires 10 kW of power. The device can be remotely controlled and monitored, eliminating the need for deploying personnel offshore.

Upon commercial launch, the Badger Explorer will:

>> Consume substantially less energy than conventional drilling rigs. The need for helicopter transport and support vessels will be dramatically reduced, further lowering energy requirements associated with drilling operations.

>> Supplant the use of drilling mud and associated chemicals in drilling activities, thus eliminating these materials as a source of pollution. Assuming that a diesel generator were to power the device, drilling a 1 000-metre deep well with the Badger Explorer would require 2 500 litres of diesel fuel, resulting in 680 kg of CO₂ emissions. Drilling a 3 000-metre deep well would generate just over two tonnes of CO₂.

The figures for equivalent operations with conventional drilling technology amount to diesel-fuel consumption of approximately 530 tonnes, resulting in around 170 tonnes of CO_2 emissions. In comparison, the Badger Explorer would be 85 times more efficient in terms of energy consumption.

www.bxpl.com

CO₂ emissions

Extending the reach of horizontal drilling

The entrepreneurial company Reelwell AS has come up with a new technology for extended reach drilling with great potential for increasing recovery and value creation from oil and gas fields while sharpening focus on safety and the environment.

Reelwell's developments have made it possible to drill significantly longer horizontal wells than current conventional technology allows. By extending the horizontal reach from existing offshore installations, the company's technology can help to increase the resource base and make it economically feasible to tap into marginal reservoirs in the vicinity of the installation.

The drilling technology may also be employed from land to reach offshore fields in areas near the coastline. This method eliminates the risk of catastrophic blowouts at sea – always an important consideration, but especially critical in the Arctic and other areas with a vulnerable natural environment, or reservoirs below lakes or populated areas.

www.reelwell.no

Light rope to replace heavy wire

Rolls-Royce Marine AS is contributing to replacing the use of steel wire with fibre rope when installing subsea facilities. Unlike steel wire, fibre rope is nearly weightless in water.

▶ Using fibre rope as a substitute for steel wire during deepwater lifting operations decreases the power requirements of the crane, the winch and the vessel during operation. For the installation of large-scale seabed production systems off the coastline of Brazil, it has been common practice to employ drilling rigs throughout the entire process. Deploying boats equipped with a Rolls-Royce lifting system allows fibre rope to be used during certain stages of the process, cutting installation time by more than half.

In 18 months of production time, 100 installations have been carried out with the vessel *Skandi Santos*, operated by Aker Solutions.

Lighter equipment and shorter operations have reduced emissions to air substantially.

www.rolls-royce.com/marine

Generating electricity under water

Oil companies operating on the Norwegian continental shelf are now looking into the possibilities for making their next oilfield a subsea facility. Such installations require a great amount of electricity from a highly reliable source. Researchers at the independent research foundation SINTEF are poised to help with new solutions.

As the size of electrical installations on the seabed steadily grows, so does the need for high-voltage electricity. This need drives the development of new components able to provide an energy supply with adequate voltage levels. The operating companies must be assured that these components meet reliability requirements and have an acceptable lifetime, withstanding exposure to the seabed's extreme conditions.

Plastic buckets are not watertight

Even a plastic bucket is not watertight. Under high pressure, moisture penetrates the plastic and along material seams over time. Researchers at SINTEF have initiated a number of experiments with the aim of finding good solutions, for example, for high-voltage subsea cables.

The researchers' efforts to develop a subsea power supply have also led to the development of an electric power technology capable of operating under seabed water pressures down to a depth of 3 000 metres. In addition, the researchers have developed new analytical methods and models making it possible to analyse complex electrical power plants with high precision.

Helping to design alternative energy solutions

These research projects clearly demonstrate that petroleum research can make a valuable contribution to designing alternative offshore energy solutions. The research results will also be very valuable in other marine activities, such as offshore wind power production and the electrification of offshore installations.

Challenges relating to cable technology closely resemble those faced in these areas of application. Compact seabed systems can help to reduce the amount of materials used, lower productionrelated emissions, and cut the installations' environmental costs.

www.sintef.no/home

Faster drilling cuts emissions

WeST Drilling Products AS has developed the Continuous Motion Rig (CMR), a revolutionary new drilling method with the potential to cut drilling costs in half while reducing emissions accordingly.

The CMR method cuts the time required for a drilling vessel to remain on-site during operations by 40-45%, reducing energy requirements over conventional drilling practices by a corresponding amount.

CMR drilling is carried out without acceleration/deceleration when running drill string or casing in and out of the hole, translating into total energy savings of 55-60%. CMR technology contributes substantially in terms of raising energy efficiency and reducing emissions to air.

www.westgroup.no

▲ A CMR drilling installation shown on a modern Maersk "Jack Up" drilling rig. (Illustration: WeST Drilling Products AS)

The CMR triple will cut both drilling costs and emissions in half. (Illustration: WeST Drilling Products AS)

Rapid robots

Most operations on the drill floor are carried out using hydraulic systems. The company Robotic Drilling Systems AS is clearing the way for electric robots to take over these tasks, cutting time spent on operations and reducing environmental impact.

An electric robot will consume less energy than hydraulic systems. A hydraulic pump runs continuously, whether the system is in use or not. Energy is also lost when converting mechanical energy to hydraulic energy in addition to the losses incurred via valves, pipes, regulators and other components in the hydraulic system.

The use of electric robots eliminates this energy loss while facilitating planning and a greater degree of standardisation in operations. The objective of Robotic Drilling Systems' project is to develop robots that can perform tasks 30% more quickly while consuming significantly less energy than conventional technology.

www.rds.no/home

Photo: Robotic Drilling Systems AS

Separating oil and water on the seabed

One challenge facing oil production activities on the Norwegian continental shelf is the steadily increasing amount of water collected from maturing reservoirs. Water has to be removed before the oil can be transported to shore for refining into petrol, paraffin and other essential products.

Current separation facilities are almost exclusively located at the ocean surface, meaning that a great deal of energy is used to transport the oil and water several hundred metres up to the surface and then to transport the water down again. A more effective solution would be to remove the water before transporting the oil and gas to the surface. For certain projects, separating out the water on the seabed could save a great deal of energy.

FMC Technologies, Inc. is developing new techniques for subsea separation of oil, water and gas. The new technology will make subsea constructions a more feasible and attractive alternative for many more petroleum field facilities, including deepwater sites.

Compact seabed facilities make exclusive use of electric motors to run equipment such as compressors and pumps. No exhaust is emitted on site and no energy is needed for transport or for personnel facilities.

www.fmctechnologies.com

Smooth pipes have less pressure loss

When transporting liquids and gases over long distances through a pipeline, it is essential to maintain internal pressure.

Uneven pipeline surfaces are one factor causing pressure loss. Surface anomalies can arise from corrosion, droplets, or deposits of wax or other solid materials. Compressors are commonly placed at regular intervals along the pipeline in order to maintain adequate pressure and to ensure flow.

The SMOOTHPIPE project is a collaboration between SINTEF Materials and Chemistry, the Norwegian University of Science and Technology (NTNU) and a number of industry partners. The objective of the research project is to examine how the use of various coatings on the internal pipe surface can limit pressure loss in multiphase fluids. An effective coating will result in a smoother pipe surface by preventing corrosion and decrease the accumulation of deposits. This will improve energy efficiency by reducing the number of compressors needed along long pipelines.

www.sintef.no/home/Materials-and-Chemistry/

Projects included in the analysis

Project managers were asked to complete a qualitative and quantitative analysis of their respective project's potential for raising energy efficiency and/or cutting emissions to air. More than 80 project managers confirmed that their project has potential for yielding environmental benefits, either through more energy efficient processes or reduced emissions of greenhouse gases.

Projects relating to raising energy efficiency – the PETROMAKS programme

Project no.	Project Owner	Project title			
143992	Norwegian University of Science and Technology (NTNU)	High Pressure Gas Separation (HiPGaS)	<u>In</u>		
146710	SINTEF Energy Research	Eletrocoalescence – Droplet-droplet interaction and coalescence in electric fields and turbulent flow – experiments and modelling	<u>In</u>		~
156662	Statoil ASA – Trondheim	Compact LNG Heat Exchangers			
163253	Badger Explorer ASA	Badger Explorer Prototype			~
168159	SINTEF Petroleum Research	Prediction of deposition and transport of sand in sand-liquid flows (STRONG)	<u>In</u>		~
168274	Statoil ASA	Compressed Energy Technology			
168284	Remora AS	Model Test – HiLoad LNG Regas Terminal			
169293	Seabox AS	SWIT – Subsea water injection and treatment			
169381	Robotic Drilling Systems AS	Feasibility Study regarding a Subsea Drilling Module		•	
169429	Institute for Energy Technology (IFE)	Optimisation of Glycol Loop Design and Operation			~
169439	Axon Norway AS	Drilling optimization in Real Time			~
169466	SINTEF Energy Research	Electrocoalescence – Criteria for an efficient process in real crude oil systems	<u>In</u>		~
169477	NTNU Department of Chemical Engineering	High Pressure Gas Liquid Separation	<u>In</u>		
174036	Eureka Pumps AS	Underwater ElectroMagnetic Sensorsystem		•	×
175918	SINTEF Materials and Chemistry	Reducing the Environmental Impact of Acid Gas Cleaning Technology			×
175968	University of Bergen	$\mathrm{CO_{_2}}$ Injection For Stimulated Production Of Natural Gas			

>>

175997	Typhonix AS	Development and testing of a new low shear valve concept	ш		~
176018	International Research Institute of Stavanger (IRIS)	E-centre laboratories for automated drilling processes	ш		~
176024	SINTEF Energy Research	Electric power systems for subsea processing and transportation of oil and gas	<u>In</u>	•	~
176025	SINTEF Energy Research	Feasible power electronics for demanding subsea applications	<u>lu</u>	-	~
176134	SINTEF Energy Research	Electrical Insulation Materials and Insulation Systems for Subsea High Voltage Power Equipment	<u>In</u>	•	~
176137	Institute for Energy Technology (IFE)	Liquefaction of Unprocessed Well-Stream	<u>lu</u>		
176611	SICOM AS	SmartPipe – Self diagnostic pipelines and risers for future integrated process management			~
179790	Seabed Rig AS	Development of Seabed Drilling Rig, Phase 1	<u>lu</u>	•	
180038	SINTEF Materials and Chemistry	SMOOTHPIPE: Applied Surface Technology for Multiphase Pipelines	<u>lu</u>		
187320	Seabed Rig AS	Development of Seabed Drilling Rig, Co-operation with Universities	<u>lu</u>	•	
187389	SINTEF Materials and Chemistry	Arctic Materials – Materials technology for safe and cost-effective exploration and operation under arctic conditions	<u>In</u>		~
187391	International Research Institute of Stavanger (IRIS)	Water Weakening of Chalk – Physical and Chemical Processes	<u>In</u>		~
188981	eDrilling Systems AS	eDrilling Qualification and Demonstration	<u>lu</u>		
192950	eDrilling Systems AS	Complex Operations Control	<u>b.</u>		
192967	SINTEF Materials and Chemistry	Deep water repair welding and hot tapping	<u>b.</u>		~
192974	Typhonix AS	Development of a subsea Typhoon Valve	<u>b.</u>		~
193062	SINTEF Energy Research	Enabling low-emission LNG systems – Fundamentals for multilevel modeling	ш		
193108	SINTEF ICT	High Temperature Power Electronic Packaging	<u>In</u>		
193134	Norwegian University of Science and Technology (NTNU)	Improved imaging, mapping and monitoring of hydrocarbon reservoirs			
200455	SINTEF Materials and Chemistry	Acid Gas Removal with no damaging Effect on the Environment in offshore applications	ш		
200492	RESMAN AS	Future wireless well monitoring system using environmentally friendly tracers for permanent monitoring of well influx	<u>In</u>		~
200500	Badger Explorer ASA	Drilling in a Closed Cavity near Pore Pressure	<u>In</u>		~
200548	Smartmotor AS	Innovative efficient and survivable electric drive systems for subsea and downhole applications	<u>h.</u>	•	~
200553	Schlumberger Norge AS	Environmental technology for the future – Automated EPCON CFU system	<u>In</u>		
200593	SINTEF Petroleum Research	Non-circular wellbores – a new dimension in well construction	<u>lin</u>		
200600	International Research Institute of Stavanger (IRIS)	Optimizing Water Chemistry for Enhanced Oil Recovery	ш		~

>>

Responses	58	Category subtotals	53	38	10	2
215584	SINTEF Energy Research	Pressure Tolerant Power Electronics for Subsea Oil and Gas Exploitation	<u>In</u>		•	
210432	Norwegian University of Science and Technology (NTNU)	Intelligent Drilling – Automated Underbalanced Drilling Operations	<u>In</u>			
208677	Typhonix AS	Low shear centrifugal pump for produced water applications				•
208526	Iris-Software AS	Energy Efficiency of Field Development: IOR, System Analysis and Risk Evaluation	<u>In</u>			
207661	International Research Institute of Stavanger (IRIS)	Water weakening of chalk at realistic reservoir conditions	<u>In</u>			•
207538	Norwegian University of Science and Technology (NTNU)	Increased energy savings in water/oil separation through advanced fundamental emulsion paradigms	<u>In</u>			
207537	Institute for Energy Technology (IFE)	Improved Glycol Loop Operation				•
206989	SINTEF Materials and Chemistry	High Pressure Gas Liquid Separation – II				
206976	SINTEF Energy Research	Fundamental understanding of electrocoalescence in heavy crude oils	<u>I</u>			•
200548	SmartMotor AS	Innovative efficient and survivable electric drive systems for subsea and downhole applications	<u>In</u>			•
203404	Teknova AS	Optimization of electrical energy production in offshore installations			-	
203310	SINTEF Energy Research	Energy efficiency in offshore oil and gas production				
203284	Iris-Software AS	Automated drilling fluid processing				•
200714	Wireless Instrumentation Systems AS	Wireless communication and power generation for Downhole Wireless Retrofit Instrumentation	<u>In.</u>			
200665	Hole in One Producer AS	Hole in One Producer Prototype				
200624	Institute for Energy Technology (IFE)	Shut-in and Restart of Waxy Crude Pipelines: Software Module Development	<u>In</u>			

Projects relating to raising energy efficiency – the DEMO 2000 programme

Project no.	Project Owner	Project title			
136622	Framo Engineering A/S	Subsea Wet Gas Compressor			
136959	Kværner Oilfield Products AS	Kværner Subsea Processing System, Multiphase pumping			
139636	Framo Engineering A/S	Offshore Cryogenic Loading – Full scale Test.			
139739	Petrotech AS	SILD-A New concept for Well Testing and Reservoir Fluid Sampling			
149637	Petrotech AS	Big Sild – A new concept for Well Testing and Reservoir Fluid Sampling			
149651	Framo Engineering A/S	Testing Wet Gas Compressor – Subsea Wet Gas Compressor			
158025	SINTEF Materials and Chemistry	ResMan Downhole Water Monitoring System – Field Verification	<u>lu</u>		~

163803	Petrotech AS	SILD Phase 2 – A new concept for Environmental Friendly Well Testing and Reservoir Fluid Sampling				
163827	Framo Engineering A/S	Pilot installation of the Wet Gas Compressor WGC2000 on a live gas field in the North Sea				
188948	Rolls-Royce Marine AS	Heavy Duty Fibre Rope Deployment System JIP, Phase 1 – Rope testing programme	<u>In</u>			
188970	FMC Kongsberg Subsea	Next Generation Deepwater Subsea Gas-liquid Separation System	<u>lu</u>			
188979	Seabox AS	Seabed Water Injection and Treatment – Pilot Plant	<u>In</u>			
188981	eDrilling Systems AS	eDrilling Qualification and Demonstration	<u>In</u>			~
188982	RESMAN AS	Environmentally friendly chemical tracers for production monitoring in sensitive Arctic areas	<u>In</u>			~
188983	Deep Sea Anchors AS	Installation of Two Permanent Deep Penetrating Anchors at the Gjøa Field in the North Sea				~
188989	Typhonix AS	Pilot Installation and Testing of Typhoon Valve	<u>.</u>			×
188991	Seabed Rig AS	Prototype test of submerged fully automated drilling rig			•	
189003	Aker Subsea AS	High Pressure Deep Water (HPDW) LiquidBooster Pump	<u>lin</u>			
206972	Marine Ecosystem Technologies AS	Active Acoustic leak detection of oil and gas from sub sea installation				~
206991	Computas AS	CODIO Pilot	<u>lin</u>			~
207013	Nemo Engineering AS	Subsea Cooler Qualification				~
207203	Drilltronics Rig Systems AS	Drilltronics system onshore demonstrations				~
207247	Reelwell AS	Reelwell – Extended Reach Drilling beyond 20 km	<u>lu</u>			×
207278	Seabed Rig AS	Qualification of autonomous, robotic drill floor for subsequent implementation on offshore platform, phase 3	<u>In</u>		•	
207280	OCTIO Geophysical AS	OCTIO GEOPHYSICAL DEMO2000 – A solution for advance warning of leakage to surface from waste injection wells				~
215548	Reelwell AS	Reelwell Drilling Method – Applications for Subsea Wells	<u>In</u>			~
215551	Badger Explorer ASA	Badger Explorer Seismic Field Demonstrator	<u>b</u>			×
215597	Force Technology Norway AS	SmartPipe Pilot Project				×
215605	Seabox AS	Subsea Membrane Testing	<u>b.</u>			
215631	West Drilling Products AS	Build Pilot of CMR Rig at Ullrigg Test Centre	<u> 10</u>		•	×
215664	FMC Kongsberg Subsea	The Development and Qualification of a Compact Subsea Oil/Water Separation System	<u>In</u>			
Responses	31	Category subtotals	19	22	3	15

>>

This publication may be ordered at: www.forskningsradet.no/publikasjoner

The Research Council of Norway Stensberggata 26 P.O. Box 2700 St. Hanshaugen NO-0131 Oslo

Telephone: +47 22 03 70 00 Telefax: +47 22 03 70 01 post@forskningsradet.no www.forskningsradet.no/english

June 2012 ISBN 978-82-12-03116-6 (printed version) ISBN 978-82-12-03117-3 (pdf)

Translated by Darren McKellep, Glenn Wells and Victoria Coleman Number of copies: 500 Printed by: 07 Gruppen AS Design: Agendum AS Cover photos: Colourbox, SINTEF Energy Research, Badger Explorer ASA